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The Regular Solution Model for Stoichiometric Phases

and Ionic Melts

M. HILLERT and L.-I. STAFFANSSON
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The regular solution model is developed for ionic melts and stoichio-
metric phases of the type (A, B), (C, D). by a formal method. The
validity of Flood’s equation for exchange reactions in ionic melts is
discussed in terms of this model. The model is also applied to phases
which contain one substitutional and one interstitial solute. The
vacancies in the interstitial sublattice is then regarded as an additional
component of the system. Expressions for the integral and partial free
energies are derived.

A stoichiometric phase can usually be regarded as composed of two sublat-
tices, the sites of each one being occupied by a certain element. It is often
possible to dissolve some amount of a new element by substituting one or the
other of the main components. One may thus produce a ternary system com-
posed of two sublattices one of them being filled by a mixture of two elements
and the other one being filled by the third element. It has been suggested 1,2
that the thermodynamics of such a system can be described by the classical
regular solution model if applied to the sublattice containing two elements.
The same procedure should be applicable even if more than two elements
are introduced into one sublattice. However, a new problem arises if both
sublattices contain more than one element each. The simplest case can be
represented by the formula (A, B), (C,D)..

A similar case is encountered in ionic melts containing at least two cations
A and B and two anions C and D. A regular solution model for such ionic
melts has been derived by Forland 3 as an extension of the quasithermodynamic
theory of Flood, Ferland and Grjotheim.* The theory of conformal ionic solu-
tions by Blander ® leads to the same model. The same expressions will now be
derived by a simple, purely formal method, applicable to ionic melts as well
as stoichiometric phases. It will also be shown how the model can be applied
to interstitial solutions.
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REGULAR SOLUTION MODEL 3619

REPRESENTATION OF COMPOSITION

The coefficients in (A, B), (C, D), express the number of sites in each sub-
lattice and, for convenience, the size of the sublattices may be chosen such
that a+c=1. The number of moles of each kind of atom, =n, efc., are related
by the following equation

e =ny (2 +np[a=nc[o+np/c (1)

where n, represents the size of the system.
In ionic melts containing at least two cations, A and B, and two anions,
C and D, the requirement of electroneutrality yields the relation

1=y [a -+ mg b =nco+np/d (@)

where, for convenience, the quantities 1/a efc. can be identified with the
valence of each ion. The size of the system, n, is then expressed as the number
of equivalents.

It is usual to express the concentration of a certain element by its mole
fraction,
LN

X, =
AT ny+ng+ne+ng

5 ZXA= 1 (3)

For an ionic melt, it is sometimes convenient to define the mole fractions
separately for the cations and for the anions.

LN

YA:h_A—-'-Z;; Yy+Yp=1 (4)
Yo= —C ; Y 4+¥,=1 (5)
C nC+nD’ C D

It is also convenient to define corresponding fractions taking into account
the charge of the ions,

nyfa N

A
— C/: = M, Z.+Z. = 7
nc/c+'nD/d Cne, 1 ( )

The corresponding quantities for a stoichiometric phase are related in the
following way in view of b=a and d=c.

a+tc a-4c

ZA=YA=XAT; Zg=Yp=Xp (8)

a+c a+c
Z =YC=XC—C_; ZD=YD=XD-C— (9)
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3620 HILLERT AND STAFFANSSON

In the systems under consideration there are four elements but in view
of relation (1) or (2) the degrees of freedom in varying the composition is one
less than in an ordinary quaternary system. The variation in composition
can thus be represented by two parameters and the composition is conveniently
plotted on a square where the corners represent the four basic compounds
AC, AD,; B, and B,D; and the parameters Z; and Z, are used to
represent the composition of any intermediate point;® Fig. 1.

AqDd BpDyg
2 #0By0g
'GAucc..
Ach '_Z; BpCec

Fig. 1. Representation of composition in a
quaternary system where the components
mix with each other, two and two.

Fig. 2. Suggested surface of reference for
the free energy in a quaternary system
where the components mix with each other

two and two.

Temkin 7 proposed that the entropy of mixing of an ionic melt can be cal-
culated under the assumption that the anions mix randomly with each other
and the cations with each other. This model gives the following expression,

—Qideal R=n, In ¥, +nyIn Yg+n In Y +n,In ¥, (10)
or, by dividing with the size of the system as defined by n, from eqn. (2)
—SdealR=aZ, In Y, +bZ;In Yg+cZ . In Y. +dZ,In Y, (11)

The same equations with a=b and ¢=d hold for a stoichiometric phase if the
atoms mix randomly within each sublattice.

STATES OF REFERENCE FOR THE FREE ENERGY

In multicomponent systems it is usual to define an excess free energy,
EG,,, by the following expression
Gp=2XG, - TS, 1=+ FG,, (12)
i
where the quantities °G, are the free energies of the pure components. They

thus define the natural plane of reference for the free energy. As an exemple,
a ternary system has three states of reference and they define a plane of
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reference. In the systems now under consideration there are four states of
reference, one each for the compounds A,C,, AD,;, B,C, and B,D,, and it
will generally be impossible to construct a plane of reference through all of
them. It thus seems to be necessary to choose a non-planar surface of reference.
The simplest geometric shape is the one defined by the following choice.

Cu=2,2 oGAaCc +ZpZiy,*Gagoy + Zinlic *Goye. + ZpZy, “Gypg — TS, 14 + EG,,  (13)
where Z, 2 °Ga,co+ Zpy 2’ Gagpg + ZigZ S Qpyo + Zyp 2y, Gpyyp, Tepresents the surface

of reference. It is illustrated by Fig. 2 and its deviation from a plane
shape is defined by the following quantity,

AG = OGAaDd + OGBch - OGAECC - OGBde ( 1 4)

POWER SERIES REPRESENTATION OF EXCESS FREE ENERGY

In an ordinary multicomponent system the excess free energy is often
represented by a power series. As can be seen from eqn. (12), however, first
power terms are already used in defining the plane of reference. The expression
for the excess free energy therefore starts with second power terms which
define the regular solution model

EGn=2 X.X; K (15)
For the systems now under consideration eqn. (13) shows that four of
the second power terms are already used in defining the surface of reference.

The excess free energy for a simple case could possibly be described by the
remaining two terms of the same power,

EGn=2yZiy K 3+ ZZy, Koy (16)

However, it seems rather improbable that the interaction between the
A and B atoms should be quite independent of whether the other sublattice
is occupied by C or D atoms. It may thus be suggested that a regular solution
model for these systems should be defined by the following expression

EGQn=232pZ¢ Lyt + 2, ZiyZy, Ly + 222y Lo + ZZiyZig Ly® (17)

EXPRESSIONS FOR THE PARTIAL FREE ENERGIES

The partial quantities can be derived from the integral quantities of eqns.
(11) and (13) by standard methods, yielding the following rule of calculation
with our choice of composition variables

_ G, G, I8
Croce=Cnt+(1-Z4) 57, +(1-Zd) 57 (18)

The following expressions are obtained using 4G from eqn. (14).
Gryce="Gagcet+ZyZy, AG+RTaln Y, +RTcIn Y +EGa,c, (19)
Gagpg="Ga,pg—ZpZe AG+RTaln Y, +RTd In Y +EGa,n, (20)
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3622 HILLERT AND STAFFANSSON

Gsye,="Cryc.—ZyZp, AG+RTbIn Y+ RTcIn ¥ +EGpc, (21)
Guyog="Gwypg+ZyZc 4G+RTbIn Y5+ RTdIn Y, +5Gs,p,  (22)

The well-known fact that these partial quantities can be obtained from
a free energy diagram by constructing a plane of tangency and reading its
intersections with the component axes, immediately shows that the following
relations hold.

aAaDd + aBch - _G—Aacc - ngDd =0 (23)
¥ agnq + EGpyc. — FGauc. — FGpypg = 0 (24)

It is also of considerable interest to study the change in free energy if
component B is exchanged with the corresponding amount of component A,
i.e. dny/a= —dng/b and dn,=0 in view of eqn. (2). This change may be
accomplished in two ways, either by adding A,C_ and removing B,C, or by
adding A, D; and removing B,D,. With the first alternative one obtains

G _ _
(a”’A/ a’) LN = Gaacc— Onypce = Ze(*Gagee = "Grpec) + Zp("Gagng — “Goypoa) +
+RTaln Y, —RTb In Yy +EGa,c,—EQBye, (25)

It may be pointed out that this partial derivative of the total free energy
is identical to (0G,/0Z,)z. which in some cases may provide a simpler way
of calculation.

An analogous expression is obtained for the exchange of component D
with component C,

G — —
( nele ) nmy Gagce = @aapg = Za("Gagee — "Gagng) + Zp(*Gryc, — “Gyng)
+RTcIn Y —RTd In ¥, +EGa,c,—FGa,n, (26)

The expression for the excess free energy defined by eqn. (16) gives the following
partial quantities,

EQrac.=Zp* Kpp + 22 Ky, (27)
EQapa=Z? K 5+ Z32 Ky, (28)
EGpyce =2,  Kpp+Z2 Ky, (29)
EQypa=2,2 K,y +Z2 K, (30)
EQaqc. — FGaa0g =TGrpe. — "Gpypg = (Zp — Zc) Koy (31)
EGaqc.— EGBch =EGa,0q —FGpyng = (Z —Z,) K3 (32)

The more complicated expression for the excess free energy defined by eqn.
(17) gives the following partial quantities.

EQnace=2Zy(ZpZy+ ZgZic)LyyC + Zp(ZyZiy + ZipZie) Lo + ZigZiyy(Zy, — Z) Loy, ®
+ZBZD(ZB —ZA)LABD (33)
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EGAaDd = ZBZC (ZB - ZA)LABC + ZC(ZCZA + ZBZD)LCDA + ZBZC(ZC - ZD)LCDB +

+Zy(ZiZp+ ZigZy) Lyg® (34)
EGBch =Zy(ZpZys + ZAZC)LABC + 2322y — Zie) L™ + Z(Zplig+ ZpZ) Lep®
+ZyZ(Zy — Zi) Lpy® (35)
EQpypg=2ZpL\Zp— Zy)Lpy® + ZpZ (L~ Zy) Lo + Z(ZiZig + Zy Zyy) Liyy®
+Z,(ZZy+Z,Z)L, 5P (36)
FGaqc. — *0ang = Zn 2\ L€ + Zy(Zy — Zo)Lep® + Zy(Zy — Zig)Liep* — Zp Zp Ly5°
(37)
BGauce = FGnpce=Zo(Zy — Zp)Lyp® — ZZip Loyy® + ZpZicLion* + 2y (Zg — Z ) Ly g
(38)

APPLICATION TO IONIC SALT MELTS

Flood et al.t suggested that the change in free energy when the ion B is
exchanged with ion A can be evaluated by the following expression

(aGm/aZA)Zl,Zi = Z Zi (aGm/aZA)Zl,Zi' . ‘Zi:l (39)

The summation is carried out over all the ions of the opposite charge,
here denoted by 1, 2, 3, efc., and there is no limitation to the number of such
ions. The superscript Z;=1 indicates that the derivative should be evaluated
at this value.

For the case of two anions and two cations eqn. (25) yields the following
expressions,

0G. et
m =°Gagce—"Onye.+ RTaln Y, — RTb In ¥ 4+EGa c 2c=! —EGp e fc=1

(40)
oG, \ ot | o E Z —1_E z =1
52: 2 = GAaDd_ GBde+RTa,ln YA—RTb In YB+ GAaCc DT — GBch D=

(41)

and by combination with eqn. (25) one obtains,
z.=1 z =1
(ﬁ@) :ZC <ai“> ¢ +ZD (%) P —ZCEGAaCCZC=1+ZCEGBbchC=1
025/ z¢ 0Z, Zc 025/ z¢
—Z EGQa e P~ + ZyF Qe e fo~ 1+ BGage, — PlOBye, (42)

Flood’s expression thus neglects a series of excess free energy terms.
However, the sum of these terms will only be Z.Z,(L.,* — L.p®) according
to the regular solution model defined by eqn. (17) and it will be zero according
to the model defined by eqn. (16). It thus seems that Flood’s expression might
be very realistic for many cases.
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3624 HILLERT AND STAFFANSSON

APPLICATION TO AN INTERSTITIAL AND SUBSTITUTIONAL SOLUTION

An interstitial solution can be regarded as composed of two sublattices.
One of them is completely filled by the base element and any substitutionally
dissolved element. The other sublattice is only partially filled by the inter-
stitially dissolved element. However, it is possible to regard the vacancies in
the interstitial sublattice as a component and the whole system, containing
a base element A, a substitutional addition B and an interstitial addition C,
can thus be represented as a stoichiometric phase, (A,B), (C, V), where V
stands for the vacancies and a+c=1.

The equations, derived for a stoichiometric phase, can thus be applied
to this kind of system as well. The mole fractions should then be redefined,
taking into account the presence of the vacancies.’

X,=aX,/(1-X) (43)
X,=aXp/(1-X) (44)
Xy=aX.[(1-X,) (45)
X,=c—aX /(1-X,) (46)

The relation of these variables to those defined for a stoichiometric phase
is obtained by inserting X, instead of X, in eqns. (8) and (9), yielding

Zy=Y,=X,[a=X,/(1-X,) (47)
Zy=Yp=X,la=Xp/(1-X,) (48)
Zo=Y =Xy[c=(ajc)X /(1 -X,) (49)
Zy=Y,=XJo=1-(af0)X/(1- X,) (50)

It may thus be advantageous to present the composition of a ternary system
A—-B-C on a square like Fig. 1 and using X;/(1—-X_) and (a/c)X /(1 —-X,)
as the wvariables.

It should further be noticed that the expressions derived for the molar
quantities must be multiplied by (1 —X.)/a in order to hold for one mole of
real material.

It may for instance be instructive to discuss how the four terms in eqn.
(13), defining the surface of reference, are transformed. We find

2ZZ9G (1 — X o) [a= X ,°Gagve/a+ X5 Orave/a + X ((Gage. — Gagve) o+
XX

tI-X,

46c (51)

The quantity °Ga,v./a is identical to °G,, the free energy of one mole of
pure A, because the ‘“compound’ A,V is nothing but pure A. By the same
reason °Gp,v./a is identical to °Gy. However, it is not possible to identify
any term in (51) as representing the free energy of one mole of pure C because
pure C cannot exist according to our model, C being an interstitially dissolved
element. Instead, our model leads to an artificial standard state of C for the
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solution of C in A and the expression (°Ga,c.—°Ganv.)/c Trepresents its
molar free energy.

In the same .way, the molar free energy of the corresponding standard
state for the solution of C in B is equal to (°G,c.—°Gs,v.)/c. The definition
of 4G in eqn. (14) shows that the factor 4G/c in the last term of (51) represents
the difference between the two artificial standard states for C now mentioned.

The two excess free energy terms of eqn. (16) will transform to the following
shape
X, X a X

AXB K, pla+ X, (1 - I—_LXC)KCV/G

(52)

As expected the first term describes the interaction between the two ele-
ments in the main lattice and the second term describes the interaction within
the interstitial sublattice. These interactions may depend upon the elements
present in the other sublattice as described in the model defined by eqn. (17),
yielding the following more complicated expression.

(ZpZyKpp+Z:ZpKp)(1— X )[a=

a X. X,X, a X, \X,X; v
o T- X 1- X anl® +<1"61-XC>1_ Las"lat
X a X, X a X 53
+ XA].'—XC<1 Cl X‘) CVA/C+XB Cc<1 < )l:CVB/c ( )

G, for a system A—B-C according to this regular solution model is
described by the sum of (51) and (53) and the ideal entropy.

The partial quantities can be obtained from eqns. (20), (22), and (26) by
inserting the expressions for the excess free energy, eqns. (34), (36), and (37).

@a= LGay. =64+ BT In ¥, + RT In (1- Yo +56, (54)
Q= ;éBaVc=°GB+RT In YB+RT§].H(].—YC)+EGB (55)
@=L (95 =°G+RT In Y /(1-Y.)+EG (56)
=g <0nc/c)ne . ="0G¢ ¢ ¢ c

where
aPGy= — Y Y (4G + Lyg€ — L5V + Ly ® — Ley®) + YL,V + Y 2Ly +

+ YB2YC2(LABC—LABV) + YB Yczz(chB “chA) (57)
at¥GQy =Y, Y (4G + LypV — L5+ Loy ® — Ley?) + Y 2L, 3V + Y 2L 2 +

+ Y 2Y 2(Lyp® = LygV) + Y ¥ 22(Ley® — Ly®) (58)
CEGo= Yy(4G + Lyy®— L5V + Loy ® — Ley?) — Y 2L A +

+ YB Yc2(chA - chB) + YBz(LABV - LABC) (59)

COGC =°GAacc _OGAaVc + LCVA (60)
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3626 HILLERT AND STAFFANSSON

It is interesting to note that all the parameters used can in principle be
determined from experimental information on the binary system AB and

information on G, for the ternary system.
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